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CH A P TE R 1

�
Statistics and Probability 

Are Not Intuitive
If something has a 50% chance of happening, then 9 times out 
of 10 it will.

Yogi Berra

The word intuitive has two meanings. One meaning is “easy to use 
and understand.” That is my goal for this book, hence its title. The 

other meaning is “instinctive, or acting on what one feels to be true even 
without reason.” Using this definition, statistical reasoning is far from 
intuitive. This fun (really!) chapter demonstrates how our instincts often 
lead us astray when dealing with probabilities.

WE TEND TO JUMP TO CONCLUSIONS

A 3-year-old girl told her male buddy, “You can’t become a doctor; only girls can 
become doctors.” To her this made sense, because the three doctors she knew 
were all women.

When my oldest daughter was 4, she “understood” that she was adopted 
from China, whereas her brother “came from Mommy’s tummy.” When we read 
her a book about a woman becoming pregnant and giving birth to a baby girl, her 
reaction was, “That’s silly. Girls don’t come from Mommy’s tummy. Girls come 
from China.” With n = 1 in each group, she made a general conclusion. When 
new data contradicted that conclusion, she questioned the accuracy of the new 
data rather than the validity of her conclusion.

The ability to generalize from a sample to a population is hard wired into our 
brains and has even been observed in 8-month-old babies (Xu & Garcia, 2008).

Scientists need statistical rigor to avoid giving in to the impulse to make 
overly strong conclusions from limited data.

WE TEND TO BE OVERCONFIDENT

Sometimes the phrase “90% confident” is not a result of a statistical calculation, but 
rather a way to quantify a subjective feeling of uncertainty. How good are people at 
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 PA RT A •  I N T RODUC I NG STAT IST IC S

judging how confident they are? You can test your own ability to quantify uncer-
tainty using a test devised by Russo and Schoemaker (1989). Answer each of these 
questions with a range that you are 90% confident contains the correct answer. Don’t 
use Google to find the answer. Don’t give up and say you don’t know. Of course you 
don’t know the answers precisely! The goal is not to provide correct answers, but 
rather to correctly quantify your uncertainty and come up with ranges of answers 
that you think are 90% likely to include the true answer. If you have no idea, answer 
with a superwide interval. For example, if you truly have no idea at all about the 
answer to the first question, answer with the range 0 to 120 years old, which you can 
be 100% sure includes the true answer. But try to narrow your responses to each of 
these questions to a range that you are 90% sure contains the right answer:

• Martin Luther King Jr.’s age at death
• Length of the Nile river, in miles or kilometers
• Number of countries in OPEC
• Number of books in the Old Testament
• Diameter of the moon, in miles or kilometers
• Weight of an empty Boeing 747, in pounds or kilograms
• Year Mozart was born
• Gestation period of an Asian elephant, in days
• Distance from London to Tokyo, in miles or kilometers
• Deepest known point in the ocean, in miles or kilometers

Compare your answers with the correct answers listed at the end of this 
chapter. If you meet the goal of being 90% confident, you will have created nine 
intervals that include the correct answer and one that excludes it.

Russo and Schoemaker (1989) tested more than 1,000 people and reported 
that 99% of them were overconfident. Almost everyone was too confident and 
answered with narrow ranges that miss the correct answer far more than 10% 
of the time. The goal was to create ranges that were correct 90% of the time, but 
most people created ranges that were too narrow and included only 30 to 60% of 
the correct answers. Similar studies have been done with experts estimating facts 
in their areas of expertise, and the results are similar.

These results emphasize that you must distinguish computed confidence 
from informal confidence intervals that are informal guesstimates (even from 
an expert).

WE SEE PATTERNS IN RANDOM DATA

Most basketball fans believe in “hot hands”—that players occasionally have 
streaks of successful shots. People think that once a player has successfully made 
a shot, he is more likely to make the next shot, and that clusters of successful 
shots will happen more often than predicted by chance.

Gilovich (1985) analyzed data from the Philadelphia 76ers during the 
 1980–1981 basketball season. Players and fans both strongly agreed that a player 
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CH A P T ER 1 •  Statistics and Probability Are Not Intuitive 

was more likely to make a shot after making the last one than after missing it, and 
more likely to miss a shot after missing the prior shot. The data clearly show this 
is not the case. Additionally, the number of streaks of four, five, or six successful 
shots in a row was no larger than predicted by chance. The sequence of successes 
and failures was entirely random, yet almost everyone saw patterns.

Table 1.1 demonstrates the problem. Table 1.1 presents simulated data from 
10 basketball players (1 per row) shooting 30 baskets each. An “X” represents a 
successful shot and a “–” represents a miss. Is this pattern random? Or does it 
show signs of nonrandom streaks? Look at Table 1.1 before continuing.

Most people see patterns. It just doesn’t seem random.
In fact, Table 1.1 was generated randomly. Each spot had a 50% chance of 

being “X” (successful shot) and 50% chance of being “–” (not successful), without 
taking into consideration previous shots. The pattern is entirely random, as if it 
were the result of flipping a coin.

Although I know that the arrangement is entirely random, I can’t help but 
see patterns. The X’s seem to cluster together more than expected by chance 
alone, although they really don’t. Our brains evolved to find patterns and do so 
very well. Too well! Statistical rigor is needed to avoid being fooled by apparent 
patterns among random data.

It is important that we recognize this built-in handicap. Our brains tend to 
find patterns among random data, so statistical methods are needed to make 
correct conclusions. Conversely, this makes it impossible to informally gener-
ate random numbers or assign subjects randomly to treatments. Attempts at 
informal randomization never have long enough runs of the same value. If you 

– – X – X – X X X – – – – X X X – X X – X X – – – X X – – – X X

X – – X – X X – – X X – – X – X – X – – – X X X X – – X X – – –

X X X X – X X – X – X – X X X – – – – – X – X – X X X – – – – X

– X – X – – X X – X X – X X – – X X X X – – – – X X – X – X – –

– X – X – X X – – – X X – – – – – – X – X – X – – X – – X – X X

– – X X X – X – X – – – X X X X – X X X X – – – – – X X – X X X

X – – X X – – X X X X – X X X – – X – – X X X X X – X X X – – –

X – X – – – X X X X X – – X X – X X – X X X – X X – X – – X – X

X X X – – X X X X X – X – X – X X – X – X X X X – X X – X X X X

– – – X X X – – X X X – X X X – – X – – X – X X X X X – – – X –

Table 1.1.  Random patterns don’t seem random. 

Table 1.1 represents 10 basketball players (1 per row) shooting 30 baskets each. An “X” rep-
resents a successful shot, and a “–” represents a miss. Is this pattern random? Or does it show 
signs of nonrandom streaks? Most people tend to see patterns, but in fact the arrangement 
is entirely random. Each spot in the table had a 50% chance of having an “X.”
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 PA RT A •  I N T RODUC I NG STAT IST IC S

want random numbers, don’t make them up. Flip a coin, throw dice, or use a 
computer program.

WE DON’T REALIZE THAT 
COINCIDENCES ARE COMMON

In November 2008, I attended a dinner for the group Conservation International. 
The actor Harrison Ford is on their board, and I happened to notice that he wore 
an ear stud. The next day, I watched an episode of the TV show Private Practice, 
and one character pointed out that another character had an ear stud that looked 
just like Harrison Ford’s. The day after that, I happened to read (in a book on 
serendipity!) that the Nobel prize-winning scientist Baruch Blumberg looks like 
Indiana Jones, a movie character played by Harrison Ford (Meyers, 2007).

What is the chance that this set of coincidences would happen? Tiny. But 
that doesn’t mean much. It is very unlikely that any particular coincidence will 
occur. But it is very likely that some astonishing set of unspecified events will 
occur. That is why remarkable coincidences are always noted in hindsight and 
never predicted with foresight.

WE HAVE INCORRECT INTUITIVE 
FEELINGS ABOUT PROBABILITY

Imagine that you can choose between two bowls of jelly beans. The small bowl 
has 9 white and 1 red jelly bean. The large bowl has 93 white beans and 7 red 
beans. Both bowls are well mixed, and you can’t see the beans. Your job is to pick 
1 bean. You win a prize if your bean is red. Should you pick from the small bowl 
or the large one?

When you choose from the small bowl, you have a 10% chance of picking a 
red jelly bean. When you pick from the large bowl, the chance of picking a red 
one is only 7%. So clearly, your chances of winning are higher if you choose from 
the small bowl. Yet, about two-thirds of people prefer to pick from the larger bowl 
(Denes-Raj & Epstein, 1994). Many of these people do the math and know that 
the chance of winning is higher with the small bowl, but they feel better about 
choosing from the large bowl, because it has more red beans, and offers more 
chances to win. Of course, it also has more white beans and more chances to lose. 
Our brains simply are not evolved to deal with probability sensibly, and most 
people make the illogical choice.

Another example: Many people rated cancer as riskier when it was described 
as killing 1,286 of 10,000 people than when it was described as killing 24.14 of 
100 people, although the latter is double the risk (Yamagishi, 1997).

WE AVOID THINKING 
ABOUT AMBIGUOUS SITUATIONS

Imagine that you have to choose between two urns. The first urn contains exactly 
50 red jelly beans and 50 black jelly beans, randomly mixed together. The second 
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CH A P T ER 1 •  Statistics and Probability Are Not Intuitive 

urn also contains 100 jelly beans. Some are red and some are black, but you don’t 
know how many of each. You can reach in and pick a jelly bean at random, but 
can’t see a bean until you choose it. You will win a prize if you happen to pick a 
red jelly bean, and can choose which urn to select from. Which urn should you 
choose from?

Now the rules change, and you will win a prize if you happen to pick a black 
bean. Which urn should you choose from?

Almost everyone chooses the first urn in both cases (Ellsberg, 1961). There 
is nothing in the problem that tells you whether there are more red jelly beans 
or more black ones in the second urn, so you are equally likely to pick either. 
Yet almost everyone prefers to choose from the first urn.

Choosing from the first urn requires that you think about probability—the 
chance of randomly picking from a 50:50 mixture of red and black jelly beans. 
Choosing from the second urn is more complicated because it combines ambigu-
ity (you simply don’t know whether it contains more red jelly beans, more black 
ones, or an equal number of each) and probability. Thinking about the second 
urn makes us feel uncomfortable. Use of functional magnetic-resonance imag-
ing to map blood flow in the brain demonstrates that different parts of the brain 
deal with risk (probability) and ambiguity. When one thinks about an ambigu-
ous situation (analogous to the second urn above), activity in the fear center in 
the amygdala increases and activity in the reward center in the caudate decreases 
(Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005). Our brains don’t like thinking 
about ambiguous situations, and this prevents us from logically comparing the 
two situations.

WE FIND IT HARD TO COMBINE PROBABILITIES

Here is a classic brain teaser called the Monty Hall problem, named after the 
host of a game show. You are a contestant on a game show and are presented 
with three doors. Behind one is a fancy new car. Behind the others are worth-
less prizes. You must choose one door and you get to keep whatever is behind 
it. You pick a door. At this point, the host chooses one of the other two doors 
to open and shows you that there is no car behind it. He now offers you the 
chance to change your mind and choose the other door (the one he has not 
opened).

Should you switch?
Before reading on, you should think about the problem and decide whether you 

should switch. There are no tricks or traps. Exactly one door has the prize; all doors 
appear identical; the host (who knows which door leads to the new car) has a perfect 
poker face and gives you no clues. There is never a car behind the door the modera-
tor chooses to open. Don’t cheat. Think it through before continuing.

When you first choose, there are three doors and each is equally likely to 
have the car behind it. So your chance of picking the winning door is one third. 
Let’s separately think through the two cases—originally picking a winning door 
or originally picking a losing door.
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 PA RT A •  I N T RODUC I NG STAT IST IC S

If you originally picked the winning door, then neither of the other doors 
has a car behind it, and the host opens one of these. If you switch, you’ll switch 
to the other losing door.

What happens if you originally picked a losing door? In this case, one of the 
remaining doors has a car behind it and one doesn’t. The host knows which door 
the car is behind and opens the other one. This means that the remaining closed 
door must be the winning door. If you originally picked one of the two wrong 
doors, then switching will certainly lead you to win.

Let’s recap. If you originally chose the correct door (which has a one-third 
chance), then switching will make you lose. If you originally picked either of the 
two losing doors (which has a two-thirds chance), then switching will definitely 
make you win. Switching from one losing door to the other losing door is impos-
sible, because the host will have opened the other losing door.

Your best choice is to switch! Of course, you can’t be absolutely sure that 
switching doors will help. One-third of the time you will be switching away from 
the prize. But the other two-thirds of the time you will be switching to the prize. 
If you repeat the game many times, you will win twice as often by switching 
doors every time. If you only get to play once, you have twice the chance of win-
ning by switching doors.

Almost everyone (including mathematicians and statisticians) intuitively 
reaches the wrong conclusion and thinks that switching won’t be helpful (Vos 
Savant, 1997). It is very hard to simultaneously think through two (or more) par-
allel tracks.

WE DON’T DO BAYESIAN 
CALCULATIONS INTUITIVELY

Imagine this scenario. You are screening blood samples for the presence of human 
immunodeficiency virus (HIV). The prevalence of HIV is quite low (0.1%) among 
the selected donors. The antibody test is quite accurate, but not quite perfect. It 
correctly identifies 99% of infected blood samples, but also incorrectly concludes 
that 1% of noninfected samples have HIV. When this test identifies a blood sample 
as having HIV present, what is the chance that the donor does, in fact, have HIV, 
and what is the chance the test result is an error (false positive)?

Try to come up with the answer before reading on.
Let’s imagine that 100,000 people are tested. Of these, 100 (0.1%) will have 

HIV, and the test will be positive in 99 (99%) of them. The other 99,900 people 
do not have HIV, but the test will incorrectly return a positive result in 1% of 
cases. So there will be 999 false-positive tests. Altogether there will be 99 + 999 = 
1,098 positive tests and only 99/1,098 = 9% will be true positives. The other 91% 
of the positive tests will be false positives. So if a test is positive, there is only a 9% 
chance that there is HIV in that sample.

Most people, including most physicians, intuitively think that a positive 
test almost certainly means that HIV is present. Our brains are not wired to 
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CH A P T ER 1 •  Statistics and Probability Are Not Intuitive 

combine what we already know (the prevalence of HIV) with the new knowl-
edge (the test is positive).

If the same test is used in a different situation, the results would be differ-
ent. Imagine the same test is used in a population of IV-drug users in which you 
expect the prevalence of HIV to be 10%. Again, let’s imagine that 100,000  people 
are tested. Of these, 10,000 (10%) will have HIV, and the test will be positive 
in 9,900 (99%) of them. The other 90,000 people do not have HIV, but the test 
will incorrectly return a positive result in 1% of cases. So there will be 900 false-
positive tests. Altogether there will be 9,900 + 900 = 10,800 positive tests and 
9,900/10,800 = 92% will be true positives. The other 8% of the positive tests will 
be false positives. So if a test is positive, there is a 92% chance that there is HIV 
in that sample.

The interpretation of the test result depends greatly on the prevalence of the 
disease. To reach the correct conclusion, one must combine a baseline frequency 
with new data. This example gives you a taste of what is called Bayesian logic 
(which will be discussed more thoroughly in Chapter 18).

WE ARE FOOLED BY MULTIPLE COMPARISON

Austin, Mamdani, Juurlink, and Hux (2006) “mined” a database of health sta-
tistics of 10 million residents of Ontario, Canada. They examined 223 different 
reasons for hospital admission and tested each to see whether it occurred more 
often in people born under each astrological sign. Seventy-two diseases (reasons 
for hospital admission) occurred statistically significantly more frequently in 
one astrological sign than in all the others put together. This means that in each 
of those 72 cases, the results would occur by chance alone less than 5% of the 
time (you’ll learn more about what “statistical significance” means later in this 
book).

Sounds impressive, doesn’t it? Makes you think that there really is some rela-
tionship between astrology and health. But the study wasn’t really done to inves-
tigate any association between astrological sign and disease; rather, it was done 
as a warning about the difficulties of interpreting statistical results when many 
comparisons are performed.

It is misleading to focus on the strong associations between one disease 
and one astrological sign without considering the others. Austin et al. (2006) 
examined 223 different reasons for hospital admissions and asked whether 
each occurred more often in each of 12 astrological signs. Therefore, they 
made 223 × 12 = 2,676 distinct comparisons. If there truly is no association 
between astrological sign and disease (and there is no reason to think there is), 
you’d expect that just by chance, 5% of these comparisons would have P values 
less than 0.05. Because 5% of 2,676 = 134, one would expect to find about 134 
significant associations just by chance. So it is hardly impressive that they 
found 72 significant associations. That’s fewer significant results than you’d 
expect to find purely by chance.
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 PA RT A •  I N T RODUC I NG STAT IST IC S

One of the comparisons was truly striking. People born under the sign of 
Taurus had 27% more admissions for diverticulitis of the colon. The chance of 
observing this large a difference in incidence rates by chance alone is 0.0006. 
This means that if there truly were no association between diverticulitis and 
being born under the sign of Taurus, the chance of seeing such a striking differ-
ence in hospital admissions rates, by chance alone, is 0.06%.

This sounds impressive. Could it be real?
By chance alone, you’d expect to see a P value less than 0.0006 in 1 of 1,667 

comparisons (1/0.0006). Since these investigators made nearly 3,000 comparisons 
of different diseases with different astrological signs, a P value less than 0.0006 is 
not surprising. You expect such a small P value purely based on chance.

Our brains evolved to spot patterns and are good at it. So we notice when a 
particular disease is more frequent among those born under a particular astro-
logical sign. It doesn’t seem natural to correct for multiple comparisons, but this 
is essential if you don’t want to be fooled by chance associations.

Chapters 22 and 23 explore multiple comparisons in more depth.

WE TEND TO IGNORE ALTERNATIVE EXPLANATIONS

Imagine this scenario (adapted from Bausell, 2007). You are doing a study of acu-
puncture for osteoarthritis. Patients who come in with severe arthritis pain are 
treated with acupuncture. They are asked to rate their arthritis pain before and 
after the treatment. The pain decreases in most patients, but statistical calcula-
tions show that such consistent findings are exceedingly unlikely to happen by 
chance. Therefore, the acupuncture must have worked. Right?

Not really. The decrease in recorded pain may not be caused by the acupunc-
ture. Here are five alternative explanations:

•  Placebos reduce pain considerably. If the patients believe in the therapist 
and treatment, that belief may reduce the pain considerably. The pain relief 
may be a placebo effect and have nothing to do with the acupuncture.

•  The patients want to be polite and may tell the experimenter what he or she 
wants to hear (that the pain decreased). Thus, the decrease in reported pain 
may be because the patients are not accurately reporting pain after therapy.

•  Before, during, and after the acupuncture treatment, the therapist talks with 
the patients. Perhaps he recommends a change in aspirin dose, a change in 
exercise, or nutritional supplements. The decrease in reported pain might 
be due to these aspects of the treatment, rather than the acupuncture.

•  What if three patients experience worse pain with acupuncture, whereas 
the others get better? The experimenter reviews the records of those three 
patients carefully and decides to remove them from the study because one of 
those people actually has a different kind of arthritis than the others, and two 
had to climb stairs to get to the appointment because the elevator didn’t work 
that day. These kinds of manipulations of the data, although well intentioned, 
are fraudulent and may explain all the pain relief observed in the study.
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CH A P T ER 1 •  Statistics and Probability Are Not Intuitive 

•  The pain from osteoarthritis varies significantly from day to day. People 
tend to seek therapy when pain is at its worst. If you start keeping track of 
pain on the day when it is the worst, it is quite likely to get better, even with 
no treatment. The next section explores this regression to the mean. 

WE ARE FOOLED BY REGRESSION TO THE MEAN

Figure 1.1 illustrates simulated pressures. All values were randomly chosen in 
the same manner. The graph is divided into two columns (before treatment 
and after treatment) but the values were randomly chosen without regard to 
the labels. Figure 1.1A illustrates 24 pairs of values. The “before” and “after” 
groups are about the same. In some cases the value goes up and in others it goes 
down. If these were real data, you’d conclude that there is no evidence at all that 
the treatment had any effect on the outcome (blood pressure).

Now imagine the study were designed differently. You’ve made the before 
measurements and want to test a treatment for high blood pressure. There is no 
point in treating individuals whose blood pressure is not high, so you select the 
people with the highest pressures to study. Figure 1.1B illustrates data for only 
the 12 individuals with the highest before values. In every case but 1, the after 
values are lower. If you performed a statistical test (paired t test; see Chapter 31), 
the results would seem to be extremely convincing. The graph on the bottom-
right illustrates the other 12 pairs, those with low values when measured before. 
In all but 2 pairs, the values go up. Again, these values alone would seem to be 
convincing evidence that the treatment brings down the value measured (blood 
pressure).

But these are random data! The before and after values came from the same 
distribution. What happened?

Variation in blood pressure (and almost any other variable) has two com-
ponents. Some of the variability is biological. However, this example was con-
structed to have no systematic (biological) difference between the before and 
after values. The rest of the variation is random. All the variation in this example 
is random. For Figure 1.1C, we selected subjects who happened to have the high-
est blood pressures. When blood pressure is assessed again, there is no reason to 
expect that the random factor will again lead to a high pressure. So, on average, 
the after measurements are lower. This is not because of any effect of the treat-
ment, but is purely a matter of chance. When we selected only the people who 
happened to have low blood pressure, the treatment appeared to cause a substan-
tial increase.

When you select individuals because some measurement is particularly 
high, a later measurement is likely to be lower. This effect is called regression to 
the mean. People who are especially lucky at picking stocks one year are likely to 
be less lucky then next year. People who get extremely high scores on one exam 
are likely to get lower scores on a repeat exam. An athletes that does extremely 
well in one season is likely to perform more poorly the next season. Athletic 
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Figure 1.1.  Regression to the mean.

All data in (A) were drawn from random distributions (Gaussian, mean = 120, SD = 15) 
without regard to the designations “before” and “after” and without regard to any pairing. 
(A) includes 48 random values, divided arbitrarily into 24 before–after pairs (which overlap 
enough that you can’t count them all). (B) includes only the 12 pairs with the highest before 
values. In all but 1 case, the after values are lower than the before values. (C) shows the 
pairs with the lowest before measurements. In 10 of the 12 pairs, the after value is “higher” 
than the before value. If you only saw the graph in (B) or (C), you’d probably conclude that 
whatever treatment came between before and after had a large impact on blood pressure. 
In fact, these graphs simply illustrate random values, with no change between before and 
after. The apparent change is called regression to the mean.

(A)

(B) (C)
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CH A P T ER 1 •  Statistics and Probability Are Not Intuitive 

performance certainly requires great skill, but random factors also play a major 
role and will cause regression to the mean. This probably explains much of the 
Sports Illustrated cover jinx—many believe that appearing on the cover of Sports 
Illustrated will bring an athlete bad luck (Wolff, 2002).

Answers to the ten questions in the overconfident section:
Martin Luther King Jr.’s age at death: 39
Length of the Nile river: 4,187 miles or 6,738 kilometers 
Number of countries in OPEC: 13
Number of books in the Old Testament: 39
Diameter of the moon: 2,160 miles or 3,476 kilometers
Weight of an empty Boeing 747: 390,000 pounds or 176,901 kilograms
Year Mozart was born: 1756
Gestation period of an Asian elephant: 645 days
Distance from London to Tokyo: 5,989 miles or 9,638 kilometers
Deepest known point in the ocean: 6.9 miles or 11.0 kilometers
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