Title: Intuitive Biostatistics
Edition: 3rd (2014)
Author: Harvey J. Motulsky
Publisher: Oxford University Press
ISBN13: 978-0199946648
ISBN10: 0199946647

Order from amazon.com

  Amazon.com (USA)
  Amazon.co.uk (UK)
  Amazon.ca  (Canada)
  Amazon.co.jp (Japan) 
  Amazon.in (India) 
  Amazon.de (Germany) 
  Amazon.fr (France) 
  Amazon.es (Spain) 
  Amazon.it (Italy) 

 

If you have adopted Intuitive Biostatistics for your course, contact David Jurman at Oxford Universtiy Press, if you would like to obtain the figures for handouts or presentations. 

 

 

Share this URL:

Part A: Introducing Statistics 

1. Statistics and Probability Are Not Intuitive  

2. The Complexities of Probability 

3. From Sample to Population 

Part B: Confidence Intervals 

4. Confidence Interval of a Proportion 

5. Confidence Interval of Survival Data 

6. Confidence Interval of Counted Data

Part C: Continuous Variables 

7. Graphing Continuous Data

8. Types of Variables

9. Quantifying Scatter

10. The Gaussian Distribution

11. The Lognormal Distribution and Geometric Mean

12. Confidence Interval of a Mean

13. The Theory of Confidence Intervals 

14. Error Bars 

PART D: P Values and Significance 

15. Introducing P Values 

16. Statistical Significance and Hypothesis Testing 

17. Relationship Between Confidence Intervals and Statistical Significance 

18. Interpreting a Result That Is Statistically Significant 

19. Interpreting a Result That Is Not Statistically Significant 

20. Statistical Power 

21. Testing for Equivalence or Noninferiority 

PART E: Challenges in Statistics 

22. Multiple Comparisons Concepts 

23. The Ubiquity of Multiple Comparisons

24. Normality Tests 

25. Outliers 

26. Choosing a Sample Size

PART F: Statistical Tests 

27. Comparing Proportions

28. Case–Control Studies 

29. Comparing Survival Curves 

30. Comparing Two Means: Unpaired t Test

31. Comparing Two Paired Groups 

32. Correlation

PART G: Fitting Models to Data 

33. Simple Linear Regression  

34. Introducing Models  

35. Comparing Models  

36. Nonlinear Regression  

37. Multiple Regression 

38. Logistic, and Proportional Hazards Regression 

PART H The Rest of Statistics 

39. Analysis of Variance 

40. Multiple Comparison Tests After ANOVA 

41. Nonparametric Methods 

42. Sensitivity and Specificity and Receiver Operating Characteristic Curves 

43. Meta-analysis

PART I Putting It All Together  

44. The Key Concepts of Statistics

45. Statistical Traps to Avoid

46. Capstone Example 

47. Review Problems

48. Answers to Review Problems 

Appendices 

A. Statistics With GraphPad

B. Statistics With Excel

C. Statistics With R 

D. Values of the t Distribution Needed to Compute CIs 

E. A Review of Logarithms 

F. Choosing a Statistical Test

References